

Comparison of traditional manual and automatic systems for placing cephalometric points on a teleroentgenogram of the head in lateral projection
Abstract
The purpose of this study was to compare the reliability and processing speed of automated and manual lateral cephalogram (LC) landmarking in various software. This work was also done to determine the educational potential of artificial neural networks for inexperienced doctors as well as the potential for assistance for experienced doctors. For the study, thirty LCs were chosen at random. Dolphin Imaging and ViSurgery online were both tested. Each program developed 30 projects based on the 30 LCs studied. Each project included 48 cephalometric points. In both systems, the Cephalometric for Orthognathic Surgery analysis (COGS, Burstone et al. 1978) was performed automatically. Five experienced doctors and five first-year residents participated in the study. The processing time was documented, and the statistical significance of the measurements was determined. Two of the eight measurements revealed statistically significant differences between Dolphin and ViSurgery. These variations are not clinically significant. The average time spent on image processing by experienced doctors in Dolphin Imaging was 3 minutes 36 seconds, and 3 minutes 9 seconds in ViSurgery, while these indicators were 4 minutes 33 seconds and 3 minutes 50 seconds, respectively, for inexperienced colleagues. The study found that the results of cephalometric measurements in the Dolphin and ViSurgery programs do not differ significantly for the majority of measurements.The average amount of time spent on LC processing by experienced doctors in ViSurgery was 12.5% less than in Dolphin. This difference was 15.8% for first-year residents.
About the Authors
N. Yu. OborotistovRussian Federation
A. A. Muraev
Russian Federation
M. E. Mokryenko
Russian Federation
N. S. Tuturov
Russian Federation
A. M. Gusarov
Russian Federation
P. P. Soloshenkov
Russian Federation
E. V. Safyanova
Russian Federation
L. S. Persin
Russian Federation
S. Yu. Ivanov
Russian Federation
D. A. Senko
Russian Federation
References
1. Akhare P.J., Dagab A.M., Alle R.S., Shenoyd U., Garla V. Comparison of landmark identification and linear and angular measurements in conventional and digital cephalometry. Int J Comput Dent. 2013;16(3):241-254.
2. Arponen H., Elf H., Evälahti M., Waltimo-Sirén J. Reliability of cranial base measurements on lateral skull radiographs. Orthod Craniofacial Res. 2008;11:201-210.
3. Bulatova G., Kusnoto B., Grace V., Tsay T.P., Avenetti D.M., Sanchez F.J.C. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofac Res. 2021;24 Suppl 2:37-42.
4. Burstone C.J., James R.B., Legan H., Murphy G.A., Norton L.A. Cephalometrics for orthognathic surgery. J Oral Surg. 1978;36(4):269-277.
5. Celik E., Polat-Ozsoy O., Toygar Memikoglu T.U. Comparison of cephalometric measurements with digital versus conventional cephalometric analysis. Eur J Orthod. 2009;31(3):241-246.
6. Chen S.K., Chen Y.J., Yao C.C., Chang H.F. Enhanced speed and precision of measurement in a computer assisted digital cephalometric analysis system. Angle Orthod. 2004;74(4):501-507.
7. Farooq M.U., Khan M.A., Imran S. et al. Assessing the Reliability of Digitalized Cephalometric Analysis in Comparison with Manual Cephalometric Analysis. J Clin Diagn Res. 2016;10(10):ZC20-ZC23.
8. Goracci C, Ferrari M. Reproducibility of measurements in tablet-assisted, PC-aided, and manual cephalometric analysis. Angle Orthod. 2014;84(3):437-442.
9. Guedes P.D.A., Souza JÉN.D., Tuji F.M., Nery Ê.M. Estudo comparativo das análises cefalométricas manual e computadorizada. Dental Press J Orthodont. 2010;15:44-51.
10. Hwang H.W., Park J.H., Moon J.H. et al. Automated identification of cephalometric landmarks: Part 2-Might it be better than human? Angle Orthod. 2020;90(1):69-76.
11. Hwang H.W., Moon J.H., Kim M.G., Donatelli R.E., Lee S.J. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021;91(3):329-335.
12. Jeon S., Lee K.C. Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network. Prog Orthod. 2021;22(1):14.
13. Kim H., Shim E., Park J., Kim Y.J., Lee U., Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 2020;194.
14. Kolsanov A.V., Popov N.V., Ayupova I.O., Tsitsiashvili A.M., Gaidel A.V., Dobratulin K.S. Tsefalometricheskii analiz rentgenologicheskikh snimkov bokovoi proektsii cherepa s pomoshch'yu komponentov myagkikh vychislenii v poiske klyuchevykh tochek [Cephalometric analysis of lateral skull X-ray images using soft computing components in the search for key points]. Stomatologiia (Mosk). 2021;100(4):63-67.
15. Kunz F., Stellzig-Eisenhauer A., Zeman F., Boldt J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customizedconvolutional neural network. Künstliche Intelligenz in der Kieferorthopädie: Evaluierung einer vollständig automatisierten Fernröntgenseitenanalyse unter Anwendung eines individualisierten «convolutional neural network». J Orofac Orthop. 2020;81(1):52-68.
16. Lindner C., Wang C.W., Huang C.T., Li C.H., Chang S.W., Cootes T.F. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci Rep. 2016;6:1-10.
17. Meriç P., Naoumova J. Web-based Fully Automated Cephalometric Analysis: Comparisons between App-aided, Computerized, and Manual Tracings. Turk J Orthod. 2020;33(3):142-149. Published 2020 Aug 11.
18. Mohammad-Rahimi H., Nadimi M., Rohban M.H., Shamsoddin E., Lee V.Y., Motamedian S.R. Machine learning and orthodontics, current trends and the future opportunities: A scoping review. Am J Orthod Dentofac Orthop. 2021;160:170-192e4.
19. Muraev A.A., Tsai P., Kibardin I., Oborotistov N., Shirayeva T., Ivanov S. et al. Frontal cephalometric landmarking: humans vs artificial neural networks. Int J Comput Dent. 2020;23:139-148.
20. Muraev A.A., Kibardin I.A., Oborotistov N.Yu., Ivanov S.S., Ivanov S.Yu., Persin L.S. Use of neural network algorithms for the automated arrangement of cephalometric markers on lateral cephalograms. Russ Electron J Radiol. 2018;8:16-22.
21. Nishimoto S., Sotsuka Y., Kawai K., Ishise H., Kakibuchi M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg. 2019;30:91-95.
22. Park J.H., Hwang H.W., Moon J.H. et al. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903-909.
23. Shah A.R., Karandikar G., Ravindranath V., Sonawane M., Mhatre A. A comparative study of reliability and accuracy of manual and digital lateral cephalometric tracing. J Contemp Dent. 2016;6(1): 15-18.
24. Tsorovas G., Karsten A.L. A comparison of hand-tracing and cephalometric analysis computer programs with and without advanced features--accuracy and time demands. Eur J Orthod. 2010;32(6):721-728.
25. Uysal T., Baysal A., Yagci A. Evaluation of speed, repeatability, and reproducibility of digital radiography with manual versus computer-assisted cephalometric analyses. Eur J Orthod. 2009;31(5):523-528.
26. Vithanaarachchi N. 5th, Chandrasir i A.C., Nawarathna L.N. A comparison of cephalometric measurements obtained using conventional and digital methods. Ceylon Med J. 2020;65(3):39-45.
27. Wang C.W., Huang C.T., Hsieh M.C. et al. Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge. IEEE Trans Med Imaging. 2015;34(9):1890-1900.
28. Yao J., Zeng W., He T. et al. Automatic localization of cephalometric landmarks based on convolutional neural network. Am J Orthod Dentofacial Orthop. 2022;161(3):e250-e259.
29. Yu H.J., Cho S.R., Kim M.J., Kim W.H., Kim J.W., Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99:249-256.
30. Zeng M., Yan Z., Liu S., Zhou Y., Qiu L. Cascaded convolutional networks for automatic cephalometric landmark detection. Med Image Anal. 2021;68:101904.
Review
For citations:
Oborotistov N.Yu., Muraev A.A., Mokryenko M.E., Tuturov N.S., Gusarov A.M., Soloshenkov P.P., Safyanova E.V., Persin L.S., Ivanov S.Yu., Senko D.A. Comparison of traditional manual and automatic systems for placing cephalometric points on a teleroentgenogram of the head in lateral projection. Orthodontia. 2022;(4):24-31. (In Russ.)