Preview

Orthodontia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Machine learning gets utilized to predict patient satisfaction with the outcomes of multidisciplinary orthodontic treatment

Abstract

Malocclusions are diffi cult to treat and necessitate close coordination between specialists as well as in the doctor-patient relationship system. The degree of agreement between the patient's objective condition and his or her subjective impression of it will determine how well the patient will accept the complex treatment's results. An algorithm based on machine learning technology was developed that can predict the patient satisfaction level with the outcome of diffi cult rehabilitation. The algorithm was developed using retrospective data refl ecting patients' objective need and subjective demand before and after treatment of malocclusions. 

About the Authors

N. A. Byzov
НМИЦ «ЦНИИС и ЧЛХ»
Russian Federation


I. V. Gunenkova
НМИЦ «ЦНИИС и ЧЛХ»
Russian Federation


A. M. Dybov
ФГБУ ДПО «ЦГМА»
Russian Federation


V. A. Malygin
«Robocash»
Croatia


References

1. Арушанян А.Р., Попко Е.С., Коннов С.В. Оценка распространенности симптомов мышечно-суставной дисфункции у лиц, обращающихся в стоматологическую поликлинику. Бюллетень медицинских интернет-конференций. 2015;12(5):1755-1756.

2. Оспанова Г.Б. Ортодонтия ‒ структурная часть концепции «Здоровые зубы и качество жизни». Ортодонтия. 2000;3:85-88.

3. Славичек Р. Жевательный орган. Функции и дисфункции. М.: Азбука. 2008.

4. Bishara S.E., Burkey P.S., Kharouf J.G. Dental and facial asymmetries: a review. Angle Orthodontist. 1994;2(64):89-98.

5. Daniels C., Richmond S. The Development of the Index of Complexity, Outcome and Need (ICON). J Orthodontics. 2000;2(27):149-162.

6. Helkimo M. Studies on function and dysfunction of the masticatory system. II. Index for anamnestic and clinical dysfunction and occlusal state. Swedish Dental J. 1974;2(67):101-121.

7. Livas C., Delli K. Subjective and objective perception of orthodontic treatment need: a systematic review. Eur J Orthodontics. 2013;3(35):347-353.

8. Mamedov Ad.A., Dybov A.M., Morozova N.S., Kharke V.V., Byzov N.A. Assessing the Levels of Demands and Needs for Comprehensive Rehabilitation of Patients with Congenital and Acquired Maxillofacial Deformities/ Systematic Reviews in Pharmacy. 2020;06(11).

9. Ooi H.L., Kelleher M.G.D. Instagram Dentistry. Primary Dental J. 2021;1(10):13-19.

10. Pachêco-Pereira C., Abreu L.G., Dick B.D., De Luca Canto G., Paiva S.M., Flores-Mir C. Patient satisfaction aft er orthodontic treatment combined with orthognathic surgery: A systematic review. Angle Orthodontist. 2016;3 (86):495-508.

11. Saccomanno S., Saran S., Lagana D., Mastrapasqua R.F., Grippaudo C. Motivation, Perception, and Behavior of the Adult Orthodontic Patient: A Survey Analysis. BioMed Research Int. 2022.

12. Shaw W.C., Richmond S., OʹBrien K.D., Brook P., Stephens C.D. Quality control in orthodontics: indices of treatment need and treatment standards. Brit Dental J. 1991;3(170):107-112.

13. Tang X., Cai J., Lin B., Yao L., Lin F. Motivation of adult female patients seeking orthodontic treatment: an application of Q-methodology. Patient Preference and Adherence. 2015;9:249-256.

14. Yao L., Xu X., Ni Z., Zheng M., Lin F. Use of Q methodology to assess the concerns of adult female individuals seeking orthodontic treatment. Patient Preference and Adherence. 2015;9:47-55.


Review

For citations:


Byzov N.A., Gunenkova I.V., Dybov A.M., Malygin V.A. Machine learning gets utilized to predict patient satisfaction with the outcomes of multidisciplinary orthodontic treatment. Orthodontia. 2023;(3):32-38. (In Russ.)

Views: 10


ISSN 2224-7068 (Print)