Preview

Orthodontia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Computational fl uid dynamics-based numerical modelling of airfl ow in the upper airway

Abstract

In scientific literature, there is a strong correlation between the development of the craniofacial region and the upper airways (UA). Distal occlusion and other forms of malocclusion are risk factors for the onset of obstructive sleep apnea syndrome, according to contemporary theories. By estimating aerodynamic flow characteristics in the UA, such as regional flow velocity, pressure, and turbulent kinetic energy profiles, computational fluid dynamics (CFD) enables understanding of how the shape of the UA effects their function. With the use of 63 CBCT scans of adult patients with normal, distal, and mesial sagittal malocclusions, we were able to generate numerical meshes for CFD calculations using the ANSYS Fluent program. We have discovered that the maximum velocity and pressure decrease, which are typical of OSAS patients, occur in individuals with distal occlusion and extended head posture. 

About the Authors

V. V. Marchuk
Московский государственный медико-стоматологический университет им. А.И. Евдокимова, кафедра ортодонтии
Russian Federation


L. V. Polma
Московский государственный медико-стоматологический университет им. А.И. Евдокимова, кафедра ортодонтии
Russian Federation


T. A. Marchuk
Московский медицинский университет «Реавиз», кафедра стоматологии
Russian Federation


V. V. Petrovskaya
Московский государственный медико-стоматологический университет им. А.И. Евдокимова, кафедра ортодонтии
Russian Federation


References

1. Barkdull G.C., Kohl C.A., Patel M., Davidson T.M. Computed tomography imaging of patients with obstructive sleep apnea. Laryngoscope. 2008;118:1486- 1492.

2. Behrents R.G., Shelgikar A.V., Conley R.S. Obstructive sleep apnea and orthodontics: An American Association of Orthodontists White Paper. Am J Orthod Dentofac Orthop. 2019;156:13-28.

3. Brennan L.C., Kirkham F.J., Gavlak J.C. Sleep-disordered breathing and comorbidities: role of the upper airway and craniofacial skeleton. Nature and Science of Sleep. 2020;12:907-936.

4. Chen H., Li Y., Reiber J.H. Analyses of aerodynamic characteristics of the oropharynx applying CBCT: obstructive sleep apnea patients versus control subjects. Dentomaxillofac Radiol. 2018;47(2):2170-2238.

5. Chen Н., Aarab G., de Ruiter M.H.T. Th ree-dimensional imaging of the upper airway anatomy in obstructive sleep apnea: a systematic review. Sleep Medicine. 2016;21:19-29.

6. Enlow D.H., Hans. M. G. Essentials of Facial Growth. Philadelphia: W.B. Saunders Company. 1996.

7. Flores-Mir C., Korayem M., Heo G. Craniofacial morphological characteristics in children with obstructive sleep apnea syndrome: A systematic review and metaanalysis. JADA. 2013;144(3):269-277.

8. Hori Y., Shizuku H., Kondo A. Endoscopic evaluation of dynamic narrowing of the pharynx by the Bernouilli eff ect producing maneuver in patients with obstructive sleep apnea syndrome. Auris Nasus Larynx. 2006;33:429-432.

9. Huynh N., Desplats E., Almeida F. Orthodontics Treatments for Managing Obstructive Sleep Apnea Syndrome in Children: A Systematic Review and Metaanalysis. Sleep Medicine Reviews. 2016;25:84-94.

10. Iwasaki T., Saitoh I., Takemoto Y. Evaluation of upper airway obstruction in Class II children with fluidmechanical simulation. Am J orthodont and dentofacial orthopedics. 2011;139(2):135-145.

11. Iwasaki T., Suga H., Yanagisawa-Minami A. Relationships among tongue volume, hyoid position, airway volume and maxillofacial form in paediatric patients with Class-I, Class-II and Class-III malocclusions. Orthodontics & craniofacial research. 2019;22(1):9-15.

12. Jordan A.S., McSharry D.G., Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383:736-747.

13. Masoud A.I., Jackson G.W., Carley D.W. Sleep and airway assessment: A review for dentists. CRANIO®. 2016.

14. Moriwaki H., Inoue Y., Namba K. Clinical signifi cance of upper airway obstruction pattern during apneic episodes on ultrafast dynamic magnetic resonance imaging. Auris Nasus Larynx. 2009;36(2):187-191.

15. Wakayama T., Suzuki M., Tanuma T. Effect of nasal obstruction on continuous positive airway pressure treatment: computational fl uid dynamics analyses. PLoS ONE. 2016;11(3):Е015-Е0951.

16. Wese J., Lungu A., Peters J. CFD- and Bernoulli-based pressure drop estimates: a comparison using patient anatomies from heart and aortic valve segmentation of CT images. Med Phys. 2017;44(6):2281-2292.


Review

For citations:


Marchuk V.V., Polma L.V., Marchuk T.A., Petrovskaya V.V. Computational fl uid dynamics-based numerical modelling of airfl ow in the upper airway. Orthodontia. 2023;(3):8-14. (In Russ.)

Views: 10


ISSN 2224-7068 (Print)