

Using a machine learning system to forecast how satisfied patients with temporomandibular joint disease would be with their treatment outcomes
Abstract
Temporomandibular joint disorders are distinguished by a diverse set of clinical symptoms that have a significant influence on a patient's quality of life. The consistency of a patient's subjective appraisal of his condition with objective clinical manifestations is critical to the therapy outcome. We previously devised an algorithm for predicting patient satisfaction with the outcomes of interdisciplinary rehabilitation. As part of this study, we demonstrated the feasibility of employing this method in clinical practice in patients with temporomandibular joint disease using two clinical instances.
About the Authors
N. A. ByzovRussian Federation
I. V. Gunenkova
Russian Federation
D. A. Volcheck
Russian Federation
A. M. Dybov
Belarus
G. B. Ospanova
Russian Federation
References
1. Ашнокова И. А., Коцюбинская Ю. В. Методы обследования психосоматического статуса больных с синдромом болевой дисфункции височно-нижнечелюстного сустава // Личность в меняющемся мире: здоровье, адаптация, развитие. 2015;4(11):105–110.
2. Бызов Н. А., Гуненкова И. В, Дыбов А. М., Малыгин В. А. Прогнозирование удовлетворенности пациента результатами междисциплинарного лечения зубочелюстных аномалий на основе технологии машинного обучения // Ортодонтия. 2023;103(3):32–38.
3. Манфредини Д. Височно-нижнечелюстные расстройства: современные концепции диагностики и лечения. М.: Азбука стоматолога, 2013.
4. Потапов В. П., Пономарев А. В., Захарова Е. В., Садыков М. И., Мальцева А. В., Гелетин П. Н. Медико-пси хологическое сопровождение больных остеоартрозом височно-нижнечелюстного сустава // Вестник медицинского института «Реавиз»: реабилитация, врач и здоровье. 2018;5(35):116–121.
5. Bousché G., Koutris M., Su N., Verhoeff M. C., Lobbezoo F. Predictors of patients’ satisfaction aſter temporomandibular disorder treatment in a referral clinic // J Oral Rehabilit. 2024;2(51):266–277.
6. Epker J., Gatchel R. J. Prediction of treatment-seeking behavior in acute TMD patients: practical application in clinical settings // J Orofac Pain. 2000;4(14):303–309.
7. Lee H. J., Choi E. J., Nahm F. S., Yoon I. Y., Lee P. B. Prevalence of unrecognized depression in patients with chronic pain without a history of psychiatric diseases // The Korean J Pain. 2018;2(31):116–124.
8. McIntosh A. M., Hall L. S., Zeng Y. [et al.] Genetic and environmental risk for chronic pain and the contribution of risk variants for major depressive disorder: a family-based mixed-model analysis // PLoS medicine. 2016;8(13):e1002090.
9. Mills S. E. E., Nicolson K. P., Smith B. H. Chronic pain: a review of its epidemiology and associated factors in population-based studies // Brit J Anaesthes. 2019;2(123):273–283.
10. Okeson P. J. Management of Temporomandibular Disorders and Occlusion. 8th edition. Mosby, 2019.
11. Pinto A. S., Alves L. S., Maltz M., Susin C., Zenkner J. E. A. Does the Duration of Fixed Orthodontic Treatment Affect Caries Activity among Adolescents and Young Adults? // Caries Research. 2018;6(52):463–467.
12. Sarul M. Kawala B., Kozanecka A., Łyczek J., Antoszewska-Smith J. Objectively measured compliance during early orthodontic treatment: Do treatment needs have an impact? // Advances in Clinical and Experimental Medicine. 2017;1(26):83–87.
13. Valesan L. F., Da-Cas C. D., Réus J. C. [et al.] Prevalence of temporomandibular joint disorders: a systematic review and meta-analysis // Clin Oral Investig. 2021;2(25): 441–453.
14. Velikova G. [et al.] Proceedings of Patient Reported Outcome Measure’s (PROMs) Conference Oxford 2017: Advances in Patient Reported Outcomes Research: Oxford, UK. 8th June 2017 // Health and quality of life outcomes. 2017;15:1–12.
15. Wilkes C. H. Internal derangements of the temporomandibular joint. Pathological variations // Archives of Otolaryngology--Head & Neck Surgery. 1989;4(115): 469–477.
Review
For citations:
Byzov N.A., Gunenkova I.V., Volcheck D.A., Dybov A.M., Ospanova G.B. Using a machine learning system to forecast how satisfied patients with temporomandibular joint disease would be with their treatment outcomes. Orthodontia. 2024;(2):39-43. (In Russ.)